从技术角度来看,模具技术(包括设计、加工、制造)大致可分为五个发展阶段:手工操作阶段、手工操作加机械化(普通通用机床与工具)阶段、数字控制阶段、计算机化阶段和CAD/CAE/CAM信息网络技术一体化阶段。
一、模具设计技术的发展趋势
模具设计长期以来依靠人的经验和机械制图来完成。自从二十世纪八十年代中国发展模具计算机辅助设计(CAD)技术以来,这项技术已获得认可,并且得到来快的发展。九十年代开始发展的模具计算机辅助工程分析(CAE)技术,现在也为许多企业应用,它对缩短模具制造周期及提高模具质量有显着的作用。近年来模具CAD/CAM技术的硬件与软件价格已降低到中小企业普遍可以接受的程度,为其进一步普及创造了良好的条件;基于网络的CAD/CAM/CAE一体化系统结构初见端倪,其将解决传统混合型CAD/CAM系统无法满足实际生产过程分工协作要求的问题;CAD/CAM软件的智能化程度将逐步提高;塑料制件及模具的3D设计与成型过程的3D分析将在我国模具工业中发挥越来越重要的作用。就大多数模具制造企业而言,今后的发展方向应以提高数控化和计算机化水平为主,积极采用高新技术,逐步走向CAD/CAE/CAM信息网络技术一体化。模具无纸化制造将逐渐替代传统的设计和加工。
模具设计技术及CAD和CAE软件,今后应提高在下列几方面的水平:
*模具设计资料库和知识库系统;
*模具工程规划及方案设计;
*模具材料和标准件的合理选用;
*模具刚性、强度、流道及冷却通路的设计;
塑料模具塑料成形过程的各种模拟分析(注塑成形,包括塑料充模、保压、冷却、翘曲、收缩、纤维取向等模拟分析)、热传导和冷却过程的分析、凝固及结构应力分析等。计算浇注系统及模腔的压力场、温度场、速度场、剪切应变速率场和剪切应力场的分布并分析其结果,是非常复杂和费时的。这一模拟技术已从中面流技术发展到双面流技术,不久即可发展到既正确又快速的实体流技术,产生满足塑料件虚拟制造要求的三维注塑流动模拟软件;
*压模金属成形过程的模拟、起皱及破裂分析、应力应变和回弹分析等;
*压铸模压铸件成形流动模拟、热传导及凝固分析等;
*锻模锻件成形过程模拟及金属流动和充填分析等;
*提高设计和分析软件的快速性、智能化和集成化水平,并强化它们的功能,以适应模具的不断发展。
除了模具CAD/CAE技术之外,模具工艺设计也非常重要。计算机辅助工艺设计(CAPP)技术已开始在中国模具企业中应用。由于大部分模具都是单件生产,其工艺规程有别于批量生产的产品,因此应用CAPP技术难度较大,也难以有适合各类模具和不同模具企业的CAPP软件。为了较好地应用CAPP技术,模具企业必须做好开发和研究。虽然CAPP技术应用和推广的难度比CAD和CAE为高,但也必须重视这一发展方向。
基于知识的工程(KBE)技术是面向现代设计决策自动化的重要工具,已成为促进工程设计智能化的重要途径,近年来受到重视,将对模具的智能、优化设计产生重要的影响。
二、模具加工技术的发展趋势
中国的模具分为10大类46小类。不同类型的模具有不同的加工方法,同类模具也可以用不同加工技术去完成。模具加工的工作主要集中在模具型面加工、表面加工和装配,加工方法主要有精密铸造、金属切削加工、电火花加工、电化学加工、激光及其它高能波束加工,以及集两种以上加工方法为一体的复合加工等。数控和计算机技术的不断发展,使它们在许多模具加工方法中得到来广泛的应用。在工业产品品种多样化及个性化日益明显,产品更新换代来快,市场竞争来激烈的情况下,用户要求模具制造交货期短、精度高、质量好、价格低,带动模具加工技术向以下几方面发展。
1、高速铣削技术
近年来中国模具制造业一些骨干重点企业,先后引进高速铣床和高速加工中心,它们已在模具加工中发挥了很好的作用。当前国外高速加工机床主轴的高转速已超过100000r/min,快速进给速度可达120m/min,加速度可达1-2g,换刀时间可提高到1-2s。这样可大幅度提高加工效率,并可获得 Ra≤1的加工表面粗糙度,可切削60HRc以上的高硬度材料,给电火花成形加工带来挑战。随主轴转速的提高,机床结构及其所配置的系统及关键部件和零配件、刀具等都必须配合,令机床造价大为提高。中国进口的高速加工机床主轴高转速在短期内仍将以10000-20000r/min为主,少数会达到 40000r/min左右。虽然向更高转速发展是必然方向,但目前主要的还是推广应用。
高速加工是切削加工工艺的革命性变革,从技术发展角度看,高速铣削正与超精密加工、硬切削加工相结合,开辟了以铣代磨的领域,并大大地减轻了模具的研抛工作量,缩短了模具制造周期,在中国模具企业的应用将会来多。并联机床,又称虚拟轴机床,和3D激光6轴铣床的诞生,及开放式数控系统的应用更为高速加工增添光彩。
2、电火花加工技术
电火花加工(EDM)虽然已受到高速铣削的严峻挑战,但是EDM技术的一些固有特性和独特的优点,是高速铣削所不能完全替代,例如模具的复杂型面、深窄小型腔、尖角、窄缝、沟漕、深坑等处的加工。虽然高速铣削也能满足上述部分加工要求,但成本比EDM高得多。较之铣削加工,EDM更易实现自动化。复杂、精密小型腔及微细型腔和去除刀痕、完成尖角、窄缝、沟漕、深坑加工及花纹加工等,将是今后EDM应用的重点。为了在模具加工中进一步发挥其独特的作用,以下是EDM今后的发展方向:
* 不断提高EDM的效率、自动化程度和加工的表面完整性;
* EDM设备的精密化和大型化;
* EDM设备的加工稳定性、容易操作及优良的性能价格比;
* 满足不同要求的高效节能及反电解等新型脉电源的研发,电源波形检测及其处理和控制技术的发展;
* 高性能综合技术专家系统的研发及EDM智能化技术的不断发展和自适应控制、模糊控制、多轴联动控制、电极自动交换、双线自动切换、防电解作用及放电能量分配等技术的进一步发展;
* 混粉加工等镜面光亮加工技术的发展;
* 微细EDM技术的发展,包括三维微细轮廓的数控电火花铣削加工和微细电火花磨削及微细电火花加工技术等;
* WEDM中人工智能技术的运用、走丝系统和穿丝技术的改进等;
* 电火花铣削加工技术及机床和EDM加工中心(包括成型机和线切割机)将得到发展;
* 作为可持续发展战略,绿色EDM新技术是未来重要发展趋势。
3、快速原型制造(RPM)和快速制模(RT)技术
模具未来的大竞争因素,是如何快速地制造出用户所需的模具。RPM技术可直接或间接用于RT。金属模具快速制造技术的目标,是直接制造可用于工业化生产的高精度耐久金属硬模。间接法制模的关键技术是开发短流程工艺、减少精度损失、低成本的层积和表面光整技术的集成。RPM技术与RT技术的结合,将是传统快速制模技术(如中低熔点合金铸造、喷涂、电铸、精铸、层、橡胶浇固等)进一步发展的方向。RPM技术与陶瓷型精密铸造相结合,为模具型腔精铸成形提供了新途径。应用RPM/RT技术,从模具的概念设计到制造完成,仅为传统加工方法所需时间的1/3和成本的1/4左右,具有广阔的发展前景。要进一步提高 RT技术的竞争力,需要开发数据和加工数据生成更容易、高精度、尺寸及材料限制小的直接快速制造金属模具的方法。
4、超精密加工、微细加工和复合加工技术
随模具向精密化和大型化方向发展,超精密加工、微细加工和集电、化学、超声波、激光等技术于一体的复合加工将得到发展。目前超精密加工已稳定地达到亚微米级,纳米精度的超精密加工技术也被应用到生产。电加工、电化学加工、束流加工等多种加工技术,已成为微细加工技术的重要组成部分,国外更有用波长仅0.5 纳米的辐射波制造出的纳米级塑料模具。在一台机床上使激光铣削和高速铣削相结合,已使模具加工技术得到新发展。
5、先进表面处理技术
模具热处理和表面处理,是能否充分发挥模具材料性能的关键。真空热处理、深冷处理、包括PVD和CVD技术的气相沉积(TiN、TiC等)、离子渗入、等离子喷涂及TRD表面处理技术、类钻石薄膜覆盖技术、高耐磨高精度处理技术、不沾粘表面处理等技术已在模具制造中应用,并呈现良好的发展前景。模具表面激光热处理、焊接、强化和修复等技术及其它模具表面强化和修复技术,也将受到进一步重视。
6、模具研磨抛光
模具的研磨抛光目前仍以手工为主,效率低、劳动强度大、质量不稳定。中国已引进了可实现三维曲面模具自动研抛的数控研磨机,自行研究的仿人智能自动抛光技术已有一定成果,但目前的应用很少,预计会得到发展。今后应继续注意发展特种研磨与抛光技术,如挤压珩磨、激光珩磨和研抛、电火花抛光、电化学抛光、超声波抛光以及复合抛光技术与工艺装备。
7、模具自动加工系统
随各种新技术的迅速发展,国外已出现模具自动加工系统。模具自动加工系统应有以下特征:多台机床合理组合;配有随行定位夹具或定位盘;有完整的夹具和刀具数控库;有完整的数控柔性同步系统以及有质量监测控制系统。也有人称同时完成粗加工和精加工的机床为模具加工系统。这些今后都会得到发展。
8、模具CAM/DNC技术及软件
随数控技术和计算机技术的快速发展,CAM/DNC技术已在中国模具企业得到广泛应用。目前众多软件中,针对模具加工特点而开发的专用软件不多,针对高速加工的软件也少。适应模具加工特点、具有高水平数控加工能力和后处理程序、有完善的精密加工和高速加工功能、界面友好、简单易学、备有多种数据格式转换功能和能为系统集成准备条件的软件将是今后发展的方向。
除上述发展方向,还有切削加工刀具的正确选用。据统计,刀具占模具生产总成本的3-5%,如果能正确选用刀具,可提高生产效率20%以上。
三、模具制造综合技术的发展趋势
在模具制造中,模具设计和模具加工往往不能分割。因此,除了设计技术和加工技术之外,还必须重视一些综合技术,其发展方向将对模具制造产生重大影响。目前,以微电子技术、软件技术为核心,以数字化、网络化为特征的信息技术,正以强大的渗透力影响社会各个领域,传统制造业信息化势在必行。
1、模具CAD/CAE/CAM一体化技术
模具CAD/CAE/CAM技术已发展成为比较成熟的共性技术,硬件和软件的价格已降到中小企业普遍可以接受的水平,再加上微机的普及和应用及微机版软件的推出,模具行业普及CAD/CAM的条件已经成熟,今后必将迅速发展。模具CAD/CAE/CAM一体化及软件的宜人化、集成化、智能化、网络化将是今后的发展方向。有条件的企业应积极做好CAD/CAE/CAM技术的深化应用工作,即应用KBE技术和开展企业信息化工程。可以从 CAPP→PDM→CIMS→VM逐步深化和提高,也有不少人认为推行C3P CAD/CAE/CAM/PDM)技术可能更有效。
2、精密测量和高速扫描及数字化系统
随高精密模具的发展,模具测量技术显得来重要。模具应力、磁力测量技术和三维测量技术及R部位形状尺寸精度、表面粗糙度测量技术等都是模具测量技术的重点所在。面世不久的4D激光测量机可以自标定,不但能进行3D测量,而且可以得出质量指标,说明每个测量点的精确性。数控加工过程的在线激光测量,不但有助于保工件的加工质量,而且大大提高NC机床的运转安全。高速扫描机和模具扫描系统提供了从模型或实物扫描,到加工出期望的模型所需的多项功能,可大大缩短模具制造周期。逆向工程和并行工程将在今后的模具生产中,发挥来重要的作用。
3、模具标准化程度不断提高
正确合理地选用模具标准件和提高模具标准化程度,可以有效缩短模具制造周期、提高质量和降低成本,因此,模具标准化程度将不断提高。
4、虚拟技术将得到发展
计算机和信息网络的发展,使虚拟技术成为现实。虚拟技术可以形成虚拟空间环境,既实现企业内模具虚拟装配等工作,也可在企业之间实现虚拟合作设计、制造、合作研究开发,以致建立虚拟企业。
5、管理技术迅速发展
机械行业中常说的“三分技术七分管理”说明了管理的重要性。模具企业中现代企业制度和各项创新机制的建立和运行,既是管理技术的核心,也是模具制造成功和企业发展的保。模具制造管理信息系统(MIS)、产品信息管理(PDM)、建立因特网平台作为企业沟通和联系的手段及模具制造电子商务系统(EC)虽然不是本文的讨论围,但它们也是模具企业管理技术的发展方向,受到业界的重视。
继续了解模具钢行业,您可以点击相关文章: 更多问题,欢迎点击右侧咨询窗口与销售客服苏州浩凯模具钢材在线沟通。 自2012-10-09至今,已有09家模具厂商在我公司成功采购模具钢行业。